博九彩票

产品搜索 SEARCH
您所在的位置:首页 > 技术文章

砝码称重问题解说

作者:  时间:2013-11-07 08:54:26  点击数:

 

如果天平两端都允许放砝码,并且假定所有的砝码都是整数克。为了称出从 1 克到 40 克 所有整数克 的物品,最少需要几个砝码?

说起来这个问题历史还算是挺悠久的。据《数学游戏与欣赏》( [英] 劳斯·鲍尔 [加] 考克斯特 著,杨应辰等 译),这个问题被称作巴协 (Bachet) 砝码问题;而据《数学聊斋》(王树禾著),该问题至少可追溯到 17 世纪法国梅齐里亚克 (Meziriac, 1624) 。他们给出的答案是:

最少需要 4 个砝码,规格分别为 1 克、3 克、9 克和 27 克。
例如,为了称出 2 克的物品,我们只需在天平一端放 3 克砝码,在另一端放上 1 克的砝码;而要称出 7 克的物品,则可以在一端放上 1 克和 9 克的砝码,另一端放上 3 克的砝码。

类似地,要称出 1 克到 4 克中所有整数克的物品,只需要 2 个砝码;要称出 1 克到 13 克中所有整数克的物品,则只需要 3 个砝码;要称出 1 克到 121 克中所有整数克的物品则要 5 个砝码,它们分别是 1 克、3 克、9 克、27 克和 81 克,如此等等。

也许有人已经心领神会了,但是如果就此满足而匆匆离去的话,可能就错失了一个领略数学思想的机会——问题到这里并未结束啊!例如,4 个砝码究竟是不是最少的?还有没有其他的组合?对这些疑问的一个彻底的分析和说明,是 19 世纪由麦克马洪 (MacMahon) 给出的。下面就来领略一下其中的思想吧,或许你会从中学到很多。

 

友情链接:必发彩票网  鼎盛彩票平台  鼎盛彩票官网  必发彩票官网  9号彩票  9号彩票网  鼎盛彩票平台鼎盛彩票平台  

免责声明: 本站资料及图片来源互联网文章,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关,如用户分享不慎侵犯了您的权益,请联系我们告知,我们将做删除处理!